home *** CD-ROM | disk | FTP | other *** search
- /* randist/gsl-randist.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include <string.h>
-
- #include <gsl/gsl_randist.h>
- #include <gsl/gsl_rng.h>
- #include <gsl/gsl_test.h>
-
- void error (const char * s);
-
-
- int
- main (int argc, char *argv[])
- {
- size_t i,j;
- size_t n = 0;
- double mu = 0, nu = 0, nu1 = 0, nu2 = 0, sigma = 0, a = 0, b = 0, c = 0;
- double zeta = 0, sigmax = 0, sigmay = 0, rho = 0;
- double p = 0;
- double x = 0, y =0, z=0 ;
- unsigned int N = 0, t = 0, n1 = 0, n2 = 0 ;
- unsigned long int seed = 0 ;
- const char * name ;
- gsl_rng * r ;
-
- if (argc < 4)
- {
- printf (
- "Usage: gsl-randist seed n DIST param1 param2 ...\n"
- "Generates n samples from the distribution DIST with parameters param1,\n"
- "param2, etc. Valid distributions are,\n"
- "\n"
- " beta\n"
- " binomial\n"
- " bivariate-gaussian\n"
- " cauchy\n"
- " chisq\n"
- " dir-2d\n"
- " dir-3d\n"
- " dir-nd\n"
- " erlang\n"
- " exponential\n"
- " exppow\n"
- " fdist\n"
- " flat\n"
- " gamma\n"
- " gaussian-tail\n"
- " gaussian\n"
- " geometric\n"
- " gumbel1\n"
- " gumbel2\n"
- " hypergeometric\n"
- " laplace\n"
- " landau\n"
- " levy\n"
- " levy-skew\n"
- " logarithmic\n"
- " logistic\n"
- " lognormal\n"
- " negative-binomial\n"
- " pareto\n"
- " pascal\n"
- " poisson\n"
- " rayleigh-tail\n"
- " rayleigh\n"
- " tdist\n"
- " ugaussian-tail\n"
- " ugaussian\n"
- " weibull\n") ;
- exit (0);
- }
-
- argv++ ; seed = atol (argv[0]); argc-- ;
- argv++ ; n = atol (argv[0]); argc-- ;
- argv++ ; name = argv[0] ; argc-- ; argc-- ;
-
- gsl_rng_env_setup() ;
-
- if (gsl_rng_default_seed != 0) {
- fprintf(stderr,
- "overriding GSL_RNG_SEED with command line value, seed = %ld\n",
- seed) ;
- }
-
- gsl_rng_default_seed = seed ;
-
- r = gsl_rng_alloc(gsl_rng_default) ;
-
-
- #define NAME(x) !strcmp(name,(x))
- #define OUTPUT(x) for (i = 0; i < n; i++) { printf("%g\n", (x)) ; }
- #define OUTPUT1(a,x) for(i = 0; i < n; i++) { a ; printf("%g\n", x) ; }
- #define OUTPUT2(a,x,y) for(i = 0; i < n; i++) { a ; printf("%g %g\n", x, y) ; }
- #define OUTPUT3(a,x,y,z) for(i = 0; i < n; i++) { a ; printf("%g %g %g\n", x, y, z) ; }
- #define INT_OUTPUT(x) for (i = 0; i < n; i++) { printf("%d\n", (x)) ; }
- #define ARGS(x,y) if (argc != x) error(y) ;
- #define DBL_ARG(x) if (argc) { x=atof((++argv)[0]);argc--;} else {error( #x);};
- #define INT_ARG(x) if (argc) { x=atoi((++argv)[0]);argc--;} else {error( #x);};
-
- if (NAME("bernoulli"))
- {
- ARGS(1, "p = probability of success");
- DBL_ARG(p)
- INT_OUTPUT(gsl_ran_bernoulli (r, p));
- }
- else if (NAME("beta"))
- {
- ARGS(2, "a,b = shape parameters");
- DBL_ARG(a)
- DBL_ARG(b)
- OUTPUT(gsl_ran_beta (r, a, b));
- }
- else if (NAME("binomial"))
- {
- ARGS(2, "p = probability, N = number of trials");
- DBL_ARG(p)
- INT_ARG(N)
- INT_OUTPUT(gsl_ran_binomial (r, p, N));
- }
- else if (NAME("cauchy"))
- {
- ARGS(1, "a = scale parameter");
- DBL_ARG(a)
- OUTPUT(gsl_ran_cauchy (r, a));
- }
- else if (NAME("chisq"))
- {
- ARGS(1, "nu = degrees of freedom");
- DBL_ARG(nu)
- OUTPUT(gsl_ran_chisq (r, nu));
- }
- else if (NAME("erlang"))
- {
- ARGS(2, "a = scale parameter, b = order");
- DBL_ARG(a)
- DBL_ARG(b)
- OUTPUT(gsl_ran_erlang (r, a, b));
- }
- else if (NAME("exponential"))
- {
- ARGS(1, "mu = mean value");
- DBL_ARG(mu) ;
- OUTPUT(gsl_ran_exponential (r, mu));
- }
- else if (NAME("exppow"))
- {
- ARGS(2, "a = scale parameter, b = power (1=exponential, 2=gaussian)");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_exppow (r, a, b));
- }
- else if (NAME("fdist"))
- {
- ARGS(2, "nu1, nu2 = degrees of freedom parameters");
- DBL_ARG(nu1) ;
- DBL_ARG(nu2) ;
- OUTPUT(gsl_ran_fdist (r, nu1, nu2));
- }
- else if (NAME("flat"))
- {
- ARGS(2, "a = lower limit, b = upper limit");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_flat (r, a, b));
- }
- else if (NAME("gamma"))
- {
- ARGS(2, "a = order, b = scale");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_gamma (r, a, b));
- }
- else if (NAME("gaussian"))
- {
- ARGS(1, "sigma = standard deviation");
- DBL_ARG(sigma) ;
- OUTPUT(gsl_ran_gaussian (r, sigma));
- }
- else if (NAME("gaussian-tail"))
- {
- ARGS(2, "a = lower limit, sigma = standard deviation");
- DBL_ARG(a) ;
- DBL_ARG(sigma) ;
- OUTPUT(gsl_ran_gaussian_tail (r, a, sigma));
- }
- else if (NAME("ugaussian"))
- {
- ARGS(0, "unit gaussian, no parameters required");
- OUTPUT(gsl_ran_ugaussian (r));
- }
- else if (NAME("ugaussian-tail"))
- {
- ARGS(1, "a = lower limit");
- DBL_ARG(a) ;
- OUTPUT(gsl_ran_ugaussian_tail (r, a));
- }
- else if (NAME("bivariate-gaussian"))
- {
- ARGS(3, "sigmax = x std.dev., sigmay = y std.dev., rho = correlation");
- DBL_ARG(sigmax) ;
- DBL_ARG(sigmay) ;
- DBL_ARG(rho) ;
- OUTPUT2(gsl_ran_bivariate_gaussian (r, sigmax, sigmay, rho, &x, &y),
- x, y);
- }
- else if (NAME("dir-2d"))
- {
- OUTPUT2(gsl_ran_dir_2d (r, &x, &y), x, y);
- }
- else if (NAME("dir-3d"))
- {
- OUTPUT3(gsl_ran_dir_3d (r, &x, &y, &z), x, y, z);
- }
- else if (NAME("dir-nd"))
- {
- double *xarr;
- ARGS(1, "n1 = number of dimensions of hypersphere");
- INT_ARG(n1) ;
- xarr = (double *)malloc(n1*sizeof(double));
-
- for(i = 0; i < n; i++) {
- gsl_ran_dir_nd (r, n1, xarr) ;
- for (j = 0; j < n1; j++) {
- if (j) putchar(' ');
- printf("%g", xarr[j]) ;
- }
- putchar('\n');
- } ;
-
- free(xarr);
- }
- else if (NAME("geometric"))
- {
- ARGS(1, "p = bernoulli trial probability of success");
- DBL_ARG(p) ;
- INT_OUTPUT(gsl_ran_geometric (r, p));
- }
- else if (NAME("gumbel1"))
- {
- ARGS(2, "a = order, b = scale parameter");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_gumbel1 (r, a, b));
- }
- else if (NAME("gumbel2"))
- {
- ARGS(2, "a = order, b = scale parameter");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_gumbel2 (r, a, b));
- }
- else if (NAME("hypergeometric"))
- {
- ARGS(3, "n1 = tagged population, n2 = untagged population, t = number of trials");
- INT_ARG(n1) ;
- INT_ARG(n2) ;
- INT_ARG(t) ;
- INT_OUTPUT(gsl_ran_hypergeometric (r, n1, n2, t));
- }
- else if (NAME("laplace"))
- {
- ARGS(1, "a = scale parameter");
- DBL_ARG(a) ;
- OUTPUT(gsl_ran_laplace (r, a));
- }
- else if (NAME("landau"))
- {
- ARGS(0, "no arguments required");
- OUTPUT(gsl_ran_landau (r));
- }
- else if (NAME("levy"))
- {
- ARGS(2, "c = scale, a = power (1=cauchy, 2=gaussian)");
- DBL_ARG(c) ;
- DBL_ARG(a) ;
- OUTPUT(gsl_ran_levy (r, c, a));
- }
- else if (NAME("levy-skew"))
- {
- ARGS(3, "c = scale, a = power (1=cauchy, 2=gaussian), b = skew");
- DBL_ARG(c) ;
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_levy_skew (r, c, a, b));
- }
- else if (NAME("logarithmic"))
- {
- ARGS(1, "p = probability");
- DBL_ARG(p) ;
- INT_OUTPUT(gsl_ran_logarithmic (r, p));
- }
- else if (NAME("logistic"))
- {
- ARGS(1, "a = scale parameter");
- DBL_ARG(a) ;
- OUTPUT(gsl_ran_logistic (r, a));
- }
- else if (NAME("lognormal"))
- {
- ARGS(2, "zeta = location parameter, sigma = scale parameter");
- DBL_ARG(zeta) ;
- DBL_ARG(sigma) ;
- OUTPUT(gsl_ran_lognormal (r, zeta, sigma));
- }
- else if (NAME("negative-binomial"))
- {
- ARGS(2, "p = probability, a = order");
- DBL_ARG(p) ;
- DBL_ARG(a) ;
- INT_OUTPUT(gsl_ran_negative_binomial (r, p, a));
- }
- else if (NAME("pareto"))
- {
- ARGS(2, "a = power, b = scale parameter");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_pareto (r, a, b));
- }
- else if (NAME("pascal"))
- {
- ARGS(2, "p = probability, n = order (integer)");
- DBL_ARG(p) ;
- INT_ARG(N) ;
- INT_OUTPUT(gsl_ran_pascal (r, p, N));
- }
- else if (NAME("poisson"))
- {
- ARGS(1, "mu = scale parameter");
- DBL_ARG(mu) ;
- INT_OUTPUT(gsl_ran_poisson (r, mu));
- }
- else if (NAME("rayleigh"))
- {
- ARGS(1, "sigma = scale parameter");
- DBL_ARG(sigma) ;
- OUTPUT(gsl_ran_rayleigh (r, sigma));
- }
- else if (NAME("rayleigh-tail"))
- {
- ARGS(2, "a = lower limit, sigma = scale parameter");
- DBL_ARG(a) ;
- DBL_ARG(sigma) ;
- OUTPUT(gsl_ran_rayleigh_tail (r, a, sigma));
- }
- else if (NAME("tdist"))
- {
- ARGS(1, "nu = degrees of freedom");
- DBL_ARG(nu) ;
- OUTPUT(gsl_ran_tdist (r, nu));
- }
- else if (NAME("weibull"))
- {
- ARGS(2, "a = scale parameter, b = exponent");
- DBL_ARG(a) ;
- DBL_ARG(b) ;
- OUTPUT(gsl_ran_weibull (r, a, b));
- }
- else
- {
- fprintf(stderr,"Error: unrecognized distribution: %s\n", name) ;
- }
-
- return 0 ;
- }
-
-
- void
- error (const char * s)
- {
- fprintf(stderr, "Error: arguments should be %s\n",s) ;
- exit (EXIT_FAILURE) ;
- }
-